
TEMPLATE DESIGN © 2008

www.PosterPresentations.com

 Fault-Tolerant P2P Crawling of Rich Internet Applications

Khaled Ben Hafaiedh, Gregor v. Bochmann, Guy-Vincent Jourdan, Iosif Viorel Onut

School of Electrical Engineering and Computer Science - University of Ottawa

Introduction – Traditional vs. Rich Internet Applications

Aim

 Running multiple crawlers to reduce the crawling time.

 Sharing the searching space in a single storage unit, called the controller.

 The controller tells the crawlers what to do next.

Challenges

 Scalability: The controller may become a bottleneck when it is accessed

simultaneously by a high number of crawlers.

 Fault-Tolerance: A failure occurring within this unit may result in the entire

loss of the graph under exploration.

Architecture

 A P2P crawling system composed of multiple controllers [1].

 States are partitioned into disjoint sets and each set is assigned to a

particular controller.

 Each controller is associated with a certain number of crawlers responsible

of executing events.

Motivation

Conclusion & Future Work

 The theoretical analysis shows that:

1. The Redundancy Strategy is more efficient than the Retry strategy when

the controllers are under-loaded.

2. The Combined Strategy is more efficient than the Retry and the

Redundancy strategies when the controllers are over-loaded.

 Future Work: Evaluating the impact of the Combined strategy on the

crawling performance when controllers concurrently perform updates.

Asynchronous Communication Pattern (in RIAs)

User Interaction Partial Page Update Partial Page UpdatePartial Page Update

Server Processing Server Processing

Request Request Request

Response

Response

Response

Figure 1. Asynchronous Communication Pattern in RIAs

 Scalability: A scalable system composed of multiple controllers where a high

number of crawlers may be associated with each controller, without having a

central bottleneck.

 Fault-Tolerance: The crawling system must achieve the crawling task properly

when both crawlers and controllers are vulnerable to node failures.

Distributed RIA Crawling

 Crawlers and controllers are vulnerable to Fail-stop failures, i.e. they may

fail but without causing harm to the system.

 Perfect failure detection and reliable message delivery: This allows nodes

to correctly decide whether another node has crashed or not.

 Controllers must be reliable as they are responsible for storing information

about the RIA crawling.

 Crawlers can be unreliable as they do not store any relevant information

about the state of the RIA.

1. Chord Maintenance

 The maintenance of Chord consists of maintaining its topology as controllers

join and leave the network and repairing Chord independently of the RIA

crawling.

 A repair protocol [2] runs periodically by every single controller where each

controller attempts to update its routing information.

Traditional Web Applications

 Sending a request for a URL from the client to the server so that the

corresponding web page is downloaded in response for each URL request.

 Each web page is identified by its URL and has only a single state.

Rich Internet Applications

 Interactive and more responsive applications, referred to as RIAs.

 RIAs combine the client-side scripting with new features such as AJAX

(Asynchronous JavaScript and XML).

 JavaScript functions allow the client to modify the currently displayed page, by

communicating with the server asynchronously.

The purpose of a RIA crawler is to automatically exploring all states of a a RIA

Goal

Context indexing

 Testing for security

 Building application models

RIA Crawling

Figure 2. Distribution of states and crawlers among controllers: Each state is

associated with one controller, and each crawler gets access to all controllers

through a single controller it is associated with.

Figure 3 The Fault Tolerant P2P RIA Crawling during the exploration phase.

 Retry Strategy: Replaying any erroneous task execution, hoping that the same

failure will not occur in subsequent retries, i.e. re-executing all lost transitions a

failing controller was responsible for.

 Redundancy Strategy: Maintaining back-up copies of the set of states that are

associated with each controller, along with the set of transitions on each of these

states and their status, on the successors of each controller.

 Combined Strategy: Periodically copying the executed transitions a controller

maintains so that if the controller fails, a portion of the executed transitions remains

available to the back-up controller, and the lost transitions that have not been

copied have to be re-executed again.

Theoretical Analysis Assumptions

References
1. Ben Hafaiedh, K., Von Bochmann, G., Jourdan, G. V., Onut, I. V. : A Scalable Peer-to-Peer RIA

Crawling System with Partial Knowledge. In: proceedings of the International Conference on

Networked Systems, pp. 185--199, Marrakech, Morocco, (2014)

2. Li, X., Misra, J., Plaxton, C. G.: Concurrent maintenance of rings. In: proceedings of the 23rd ACM

Symposium on Principles of Distributed Computing, University of Texas at Austin, pp. 376--376, (2004)

Fault Tolerant P2P RIA Crawling

Crawlers and controllers must achieve two goals in parallel:

1. Maintaining Chord.

2. Recovering lost states and transitions using a Data-Recovery Mechanism

when a failing controller is detected.

Fault Tolerant P2P RIA Crawling

Parameters:

 Failure rate of the P2P crawling system: λf = 1 failure per hour (Given)

 Communication delay between two nodes: c = 1 millisecond (Measured)

 Number of controllers: n (Given)

 Time required for executing one transition: tt (measured)

 Update Period: Tp (Calculated)

 Processing time for updating the database (Consecutive updates): p (Measured)

 Number of transitions in a RIA: k (Given)

Controllers may become a bottleneck since an update is required for each newly

executed transition using the Redundancy Strategy.

 Solution: Periodically copying the executed transitions a controller maintains and

re-executing transitions that have not been copied (Combined Strategy)

What is the value of Tp with minimum overhead using the Combined Strategy ?

Figure 6. Calculation of the Update Period Tp with minimum overhead

1. The crawler searches for the controller associated with a state when a new

state is reached, by sending a StateInfo search message.

2. The controller returns in response a new transition to be executed by

sending an ExecuteEvent message.

3. The controller sets a Time-out to the assigned transition. When the Time-out

expires, the transition is reassigned to a another crawler at a later time.

4. The crawler executes the assigned transition, by either returning to the initial

state and retracing the steps that lead to a state with an un-executed event

(Reset), or by executing a path of transitions to reach a state with an un-

executed event without performing a Reset.

5. The crawler forwards the information about the newly reached state by

sending a StateInfo message to the next controller.

6. The crawler sends the result of the execution back to the previous controller

(AckJob message).

7. Upon receiving an AckJob message, the previous controller updates the

destination state of the transition.

2. Data-Recovery Mechanisms

Case when Controllers are Under-loaded

 Measurement of the processing time p for updating the database

Comparison of the Retry and the Redundancy Strategies

Figure 4. p corresponds to the slope of the line

Case when Controllers are Over-loaded

Figure 5. Comparing the Retry and the Redundancy Overheads

